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Abstract

Dark matter decaying or annihilating into µ+µ− or τ+τ− has been proposed as an
explanation for the e± anomalies reported by PAMELA and Fermi. Recent analyses
show that IceCube, supplemented by DeepCore, will be able to significantly constrain
the parameter space of decays to µ+µ−, and rule out decays to τ+τ− and annihila-
tions to µ+µ− in less than five years of running. These analyses rely on measuring
track-like events in IceCube+DeepCore from down-going νµ. In this paper we show
that by instead measuring cascade events, which are induced by all neutrino flavors,
IceCube+DeepCore can rule out decays to µ+µ− in only three years of running, and
rule out decays to τ+τ− and annihilation to µ+µ− in only one year of running. These
constraints are highly robust to the choice of dark matter halo profile and independent
of dark matter-nucleon cross section.
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1 Introduction

The existence of dark matter has been established by numerous observations. Although it

constitutes most of the matter in the universe [1], the nature of dark matter remains largely

unknown. One widely held possibility is that it is a new fundamental particle produced in the

early universe and present today as a thermal relic. Among the best motivated of these are

the so-called weakly interacting massive particles, or “WIMPs” (for reviews, see Refs. [2, 3])

which are predicted to be undergoing annihilations [4, 5, 6, 7] and possibly decays [8] in the

current epoch.

Recently, the instruments PAMELA [9], ATIC [10], PPB-BETS [11], and Fermi [12] have

observed features in the cosmic-ray e± spectrum and a positron fraction that are inconsistent

with known backgrounds. While these anomalies may be due to unidentified astrophysical

sources [13], one exciting possibility is that they are due to the decay [14, 15, 16, 17, 18, 19, 20]

or annihilation [21, 22, 23, 24, 25, 26] of dark matter particles into standard model states.

Even in the case that anomalies are not caused by new physics in the dark sector, the

constraints are generally applicable to dark matter models.

In order for dark matter to explain the anomalies, the products of decay or annihilation

must be primarily leptonic. In either case, the Fermi observation gives the most precise

preferred region in mass and lifetime/cross-section; for decays, only µ+µ− and τ+τ− final

states fit the data, while for annihilations a small region of e+e− is also permitted [29]. For

the allowed parameter space, decays or annihilations into hadrons and weak and Higgs bosons

are severely limited. Decays are constrained by the Fermi observation of the isotropic diffuse

gamma-ray flux [31], and annihilations are constrained by the production of antiprotons [32].

Explaining the anomalies with annihilations has an additional challenge. In order to

match the observed rates, the cross-section required is 103–104 times that expected for ther-

mal production of the dark matter in the early universe. This necessitates nonthermal

production mechanisms or low-velocity enhancements to the cross-section, such as the Som-

merfeld enhancement [24, 26] or the Breit-Wigner enhancement [33, 34]. Moreover, high cross

section annihilations to leptonic states are tightly constrained by synchrotron radio emis-

sions from the galactic center, although this constraint can be evaded if the true galactic dark

matter halo profile is much less steep at the galactic center than benchmark profiles [27, 29].
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For either decays or annihilations, neutrino observations may provide the strongest con-

straints — or the most promising corroborating signatures — for dark matter to be the source

of the anomalies. With the exception of the disfavored e+e− channel, the required leptonic

final states decay into neutrinos. These travel undeflected from their sources, eliminating

any uncertainties in modeling their propagation. Moreover, astrophysical sources that may

explain the anomalies are not expected to produce a large flux of neutrinos. Pulsars, for

example, would generate at most O(1) events/year at a full km-scale detector, and only at

energies greater than 10 TeV [35].

There are, however, challenges to constraining dark matter models with neutrinos. As

they are observed only by collecting Cherenkov light from induced particle showers or from

secondary muons, angular resolution is poor compared to gamma-ray observatories. Also,

there are significant backgrounds from atmospheric muon and neutrino fluxes. However,

if these backgrounds can be controlled, the poor angular resolution need not be a barrier;

indeed by integrating the flux over a large area of the sky, the resulting constraint is much

less sensitive to the choice of dark matter profile [39, 40]. Moreover, by observing the galactic

and extragalactic diffuse dark matter, rather than any that may have been captured by the

Sun or the Earth, any constraints will be independent of the dark matter-nucleon cross

sections, which are related to final states in a model-specific way [41].

Recent analyses show the power of neutrino constraints, using various strategies to re-

duce the effect of atmospheric backgrounds. The Super-Kamiokande observatory resides

in the northern hemisphere, facing away from the galactic center, minimizing atmospheric

backgrounds. Measurements of upward-going muons place a limit on the flux of galactic νµ,

providing a robust constraint that eliminates annihilations to τ+τ− as a source of the e±

anomalies [28, 29]. The IceCube observatory, on the other hand, resides at the South Pole

where down-going atmospheric fluxes are coincident with the neutrinos from the galactic

center. The overwhelming background of atmospheric muons can be suppressed by event

selection to establish an isotropic diffuse flux limit [42, 43, 44], but this limit only starts at

a high energy threshold O(10 TeV), and yields a relatively weak constraint as we will show.

Currently under construction is DeepCore [45], an in-fill of the IceCube detector which

will use the outer instrumented volume as a veto on downward-going muons to a level of

one part in 106 [46]. This will allow the galactic neutrino flux to be measured and compared
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against the atmospheric neutrino flux, providing a constraint on dark matter decays and

annihilations. Recent work [47, 48] by some of the authors shows that IceCube+DeepCore

will be able to significantly constrain the parameter space of decays to µ+µ−, and rule out

decays to τ+τ− and annihilation to µ+µ− as possible sources of the anomalies in less than

five years of running.

Recently, IceCube+DeepCore has demonstrated in simulations the ability to distinguish

between track-like events, which are due to the charged-current interactions of νµ, and cas-

cade events, which are induced by νe,τ through charged-current interactions and by all neu-

trino flavors through neutral-current interactions [49, 50]. This is very useful for constraining

dark matter neutrino fluxes because νµ is the dominant flavor of atmospheric neutrinos above

40 GeV [51, 52]. The neutrino-nucleon cross sections are the same for all flavors, so signal

would be considerably enhanced, while background would be reduced because νµ only creates

cascade events through the neutral-current interaction, which is lower in cross section than

the charged-current interaction [37, 38, 39] (see Fig. 1). Moreover, cascade events are easy

to distinguish from the tracks caused by any atmospheric muons that are not vetoed by the

outer volume.

In this paper we show that observation of cascade events at IceCube+DeepCore can

enhance the neutrino constraints on dark matter, and rule out (or corroborate) dark matter

decays to µ+µ− or τ+τ− and annihilation to µ+µ− as sources of the observed e± cosmic-ray

anomalies in a much shorter time compared to searches that rely solely on track-like events.

2 Analysis

For brevity, in the expressions below we write only the terms for neutrinos and not the terms

for antineutrinos. The terms are identical, except replacing “ν” by “ν̄”.

2.1 Galactic flux signal and background

The flux of neutrinos from the galactic dark matter halo is given by

dΦνi

dEdΩ
=

1

4π
(r�ρ�)

1

mτ

dNνi

dE
J1(∆Ω) (1)

for decays and by
dΦνi

dEdΩ
=

1

8π
(r�ρ

2
�)

1

m2
〈σv〉 dNνi

dE
J2(∆Ω) (2)
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Figure 1: Cross sections for (anti)neutrino-nucleon interactions, given by Ref. [37]. The
blue lines are for charged-current interactions, and the red lines are for neutral-current
interactions. Solid lines are for neutrinos and dashed lines are for antineutrinos.

for annihilations, where r� = 8.5 kpc is the distance from the Sun to the galactic center [53],

ρ� = 0.3 GeV cm−3 is the dark matter density in the solar neighborhood, m is the dark

matter mass, and τ and 〈σv〉 are the dark matter lifetime and thermally averaged cross

section respectively. Jn is the line-of-sight (los) integral through the halo profile:

Jn(∆Ω) =
1

∆Ω

∫
∆Ω

dΩ

∫
l.o.s.

ds

r�

(
ρ

ρ�

)n
(3)

where ∆Ω is the region of sky observed. In this analysis we use the Navarro-Frenk-White

(NFW) halo profile [55]

ρ(r) = ρ�

(r�
r

)(1 + r�/rs
1 + r/rs

)2

(4)

with rs = 20 kpc.

The neutrino source spectra dNνi/dE for flavors i are given by PYTHIA [56] simulation.

Assuming sin2 2θ12 : sin2 2θ13 : sin2 2θ23 ≈ 1 : 1 : 0, the flavor distribution will be 1 : 1 : 1 as

the neutrinos reach the Earth, having traveled a variety of long distances across the galaxy

and being well mixed through vacuum oscillations.

As discussed in the Introduction, the only background to cascade events is atmospheric
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neutrinos after the veto suppresses the background of atmospheric muons to one part in 106

and event selection is used to eliminate the rest. The νµ and νe fluxes are given by Ref. [51],

where the νµ flux agrees well with AMANDA observation [54]. At low zenith angles, the flux

of background νµ is ∼ 20 times greater than the flux of νe from 40 GeV to 100 TeV; it is

∼ 1000 times greater than the flux of ντ (see Ref. [52]). However, below 40 GeV, especially

at high zenith angles, the atmospheric fluxes of the three flavors only differ by O(1) due

to flavor mixing. Since modeling the background (and signal) below 40 GeV would require

simulating flavor mixing as the neutrinos propagate through the limb of the Earth, for this

analysis we simply set an energy cutoff of Ethresh = 40 GeV.

To obtain the event rates due to the galactic and background fluxes, we first set energy

bins for dark matter of massm to be [max(Ethresh,m/10),m/2] for decays and [max(Ethresh,m/5),m]

for annihilations. Note that the bin width is much greater than the energy resolution,

log10(Emax/Emin) ' 0.4 for track-like events and log10(Emax/Emin) ' 0.18 for cascade events [46].

We then integrate the flux times the effective area over the energy for each bin.

For track-like events due to νµ, the event rate is

Γtr. =

∫
dΩ

∫ Emax

Emin

dE ρiceNAVtr.

(
[σνN(E)]CC

dΦνµ

dEdΩ

)
(5)

where ρice = 0.9 g cm−3 is the density of ice, NA = 6.022×1023 g−1 is Avogadro’s number (to

convert mass to number of nucleons), [σνN(E)]CC is the neutrino-nucleon cross section for the

charged-current interaction, and Vtr. ≈ 0.04 km3 is the effective volume of the detector for

track-like events [46]. Note that we do not add the residual atmospheric muon background

to the background of track-like events due to the uncertainty in its value.

For cascade events we use the instrumented volume Vcasc ≈ 0.02 km3 [46, 57], the charged-

current interaction for νe,τ , and the neutral-current interaction for all flavors to obtain

Γcasc. =

∫
dΩ

∫ Emax

Emin

dE ρiceNAVcasc.

(
[σνN(E)]CC

dΦνe,τ

dEdΩ
+ [σνN(E)]NC

dΦνe,µ,τ

dEdΩ

)
. (6)

Unlike track-like events, cascade events are well contained, so the effective volume for their

detection will vary little with energy. Also, we assume that in neutral-current interactions

all the energy of the neutrino goes into the cascade. Taking partial energy transfer into

account would yield a modest improvement in significance, since most of the signal is from
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νe,τ charged-current interactions but most of the background is from νµ neutral-current

interactions.1

Finally, because the pointing capability for cascades is approximately 50◦ [46, 49] and

the pointing capability for track-like events has yet to be established, we integrate over the

2π field of view around the galactic center. As mentioned before, this should provide a

constraint which is robust to changes in dark matter halo profile. Specifically, the fractional

change between the NFW profile used here and the much less steep isothermal profile for

J1(2π) is O(10−3), and for J2(2π) is O(0.1).

2.2 Extragalactic isotropic diffuse flux

For comparison to the DeepCore constraints from down-going fluxes, we calculate the con-

straint from the isotropic diffuse flux limit for AMANDA-II from track-like events [43] and

the projected limit for IceCube from cascade events [44].

The main contribution from dark matter decay to the isotropic diffuse flux is that from

extragalactic dark matter residing on cosmological scales. The flux from the decay of cos-

mological dark matter is given by the previously derived [30, 31] formula(
dΦνi

dEdΩ

)(ex.)

=
c

4π

ΩDMρc

H0Ω
1/2
M

1

mτ

∫ ∞
1

dy
y−3/2√

1 + ΩΛ/ΩMy−3

(
dNνi

d(Ey)

)
(7)

where y ≡ 1 + z, with z being the redshift, H0 = 71.9 km s−1 Mpc−1 is the Hubble constant,

ρc = 3H2
0/(8πGN) is the critical density, ΩM = 0.258, ΩDM = 0.214, and ΩΛ = 0.721 are,

respectively, the total matter, dark matter, and dark energy densities divided by the critical

density [1]. The isotropic diffuse flux from the annihilations of cosmological dark matter is

too small to be relevant, since the density of dark matter on cosmological scales is very low,

and the flux is suppressed by another power of ρc/m.

Because of the loss of signal due to event selection and the presence of background fluxes,

both the AMANDA-II limit and the projected IceCube limit are only valid at energies greater

than ∼ 20 TeV. Below these thresholds we add the atmospheric background flux to these

limits, and use these total fluxes to calculate the constraints on the dark matter lifetime.

1Inelasticity curves are given in Ref. [36], but only for energies 10 TeV and higher.
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Figure 2: Constraints for decay to µ+µ− (left) and τ+τ− (right); the regions below the
contours are excluded. The black contour (“Super-K up-µ”) is the Super-Kamiokande limit
to 3σ from up-going muons, the orange band is the PAMELA-preferred region, and the red
ellipses are the Fermi-preferred region; these three are given by Ref. [29]. The dashed green
line (“AMANDA-II diff.”) is the constraint to 90% confidence from the AMANDA-II limit
on the isotropic diffuse flux of νµ, and the solid green line (“IceCube casc. diff.”) is the
constraint to 90% confidence from the projected IceCube limit on the isotropic diffuse flux
using cascade events. The dashed blue line (“DeepCore tr. 5yr”) is the constraint to 2σ
from IceCube+DeepCore for νµ track-like events after five years of running, and the solid
blue lines are the constraints to 2σ for all-flavor cascade events after one year (“DeepCore
casc. 1yr”) and three years (“DeepCore casc. 3yr”) of running.

3 Results

The results for dark matter decays are shown in Fig. 2; the regions below the contours are

excluded. The black contour (“Super-K up-µ”) is the Super-Kamiokande limit to 3σ from

up-going muons discussed in the Introduction. The orange band is the preferred region to fit

the PAMELA e± anomaly, and the red ellipses are the preferred region to fit the Fermi e±

anomaly. These three regions are given by Ref. [29] up to mass 30 TeV and lifetime 1027 s.

The dashed green line (“AMANDA-II diff.”) is the constraint to 90% confidence from the

AMANDA-II limit on the isotropic diffuse flux of νµ, and the solid green line (“IceCube casc.

diff.”) is the constraint to 90% confidence from the projected IceCube limit on the isotropic
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diffuse flux using cascade events. Since the flux from cosmological dark matter is weak to

begin with, contributing only 1% of the total flux over the 2π facing the galactic center, we

see that it is quickly overwhelmed by the atmospheric flux below ∼ 40 TeV. Nonetheless,

due to the lower background of atmospheric νe compared to νµ at these high energies, using

cascade events improves the constraint by a factor of ∼ 5.

The dashed blue line (“DeepCore tr. 5yr”) is the constraint to 2σ from IceCube+DeepCore

for track-like events after five years of running, and the solid blue lines are the constraints

to 2σ for cascade events after one year (“DeepCore casc. 1yr”) and three years (“DeepCore

casc. 3yr”) of running. We see that for the µ+µ− final state, while track-like events can only

reduce the available Fermi-preferred parameter space in five years, cascade events can rule

it out altogether in only three years. Similarly for the τ+τ− final state, track-like events can

rule out the parameter space in less than five years, but with cascade events it will only take

one year. Note the weakening of the constraints below m = 250 GeV, where the energy per

final-state particle is less than 125 GeV. This is caused by the energy cutoff at 40 GeV.

The results for annihilation are shown in Fig. 3; the regions above the contours are

excluded. The plots show the same constraints as for decay, except that no isotropic limits

are shown because they are weaker than the Super-Kamiokande limit by a factor ∼ 105 due

to the low density of dark matter on cosmological scales. As with decays, cascade events

greatly accelerate the development of a useful constraint. For the µ+µ− final state the region

by the Fermi data can be eliminated in only one year.

The exclusion plot for annihilations to τ+τ− is shown only for completeness, as the

Fermi-preferred region has already been eliminated by the Super-Kamiokande observation of

upward-going muons. However, it may provide a useful generic constraint on all dark matter

models irrespective of the e± anomalies.

4 Conclusion

We have shown that, by using cascade events, IceCube+DeepCore can more quickly establish

constraints on dark matter models that would explain the reported e± anomalies, and over

time establish stronger constraints than from track-like events. Specifically, track-like events

will be able to significantly constrain the parameter space of decays to µ+µ−, and rule out
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Figure 3: Constraints for annihilation to µ+µ− (left) and τ+τ− (right); the regions above
the contours are excluded. The black contour (“Super-K up-µ”) is the Super-Kamiokande
limit to 3σ from up-going muons, the orange band is the PAMELA-preferred region, and the
red ellipses are the Fermi-preferred region; these three are given by Ref. [29]. The dashed
blue line (“DeepCore tr. 5yr”) is the constraint to 2σ from IceCube+DeepCore for νµ track-
like events after five years of running, and the solid blue lines are the constraints to 2σ for
all-flavor cascade events after one year (“DeepCore casc. 1yr”) and three years (“DeepCore
casc. 3yr”) of running.

decays to τ+τ− and annihilations to µ+µ− in less than five years of running. In comparison,

cascade events can rule out decays to µ+µ− in only three years, and rule out decays to

τ+τ− and annihilation to µ+µ− after only one year. Moreover, these constraints are highly

robust to the choice of dark matter halo profile and independent of dark matter-nucleon

cross section.

In closing, we note two interesting possibilities for future work. First, if the pointing

accuracy for track-like events at IceCube+DeepCore is established to be less than 10◦, the

signal-to-noise for annihilations may be significantly enhanced by observing a smaller region

around the galactic center, possibly out-performing cascade searches (albeit with greater

dependence on the choice of dark matter halo profile). This would strengthen the discovery

potential for dark matter because the galactic center could be identified as a localized source
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of excess neutrinos. Second, because the ντ atmospheric background is so low at energies

above 40 GeV and at low zenith angles, if IceCube+DeepCore can demonstrate efficient ντ

discrimination [50], signal to noise could be increased by a factor ∼ 100. This would put

leptophilic dark matter to a severe test.
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